A Semi-Automated Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Method for the Measurement of Plasma Aldosterone

1,2Paul J. Taylor, 2Richard D. Gordon,
3Donald P. Cooper, 2Michael Stowasser

APCCMS, Hong Kong 2010

1Department of Clinical Pharmacology and 2Endocrine Hypertension Research Centre, University of Queensland, Princess Alexandra Hospital, Brisbane, Australia
3Waters Corp, Manchester, UK
Introduction

• Hypertension is an important chronic disease
• Public health challenge – high frequency and concomitant risks of cardiovascular and kidney disease
• A recent analysis of worldwide data predicts that in 2025 there will be 1.6 billion adults with hypertension¹

Introduction

• The detection of underlying endocrine causes of hypertension, such as primary aldosteronism (PAL) gives the opportunity to cure or achieve improved control through specific treatment.

• PAL was once thought to be rare (1 to 2%) but has been found to be more common (5-10%)1.

1Stowasser M, et al. \textit{J Hypertens} 2003;21:2149-57
Why Should We Look For PAL?

• The longer the duration of hypertension before PAL is detected and treated, the more severe and difficult to control the hypertension will become.

• Hypertensive patients who are found to have PAL, especially the surgically correctable form, are either cured of hypertension (50 to 60%) or show significant improvement.
Diagnosis of PAL
Hypertension

Aldosterone/renin ratio

Repeat aldosterone/renin ratio at least 1-2 times

Fludrocortisone suppression test

Hypokalemia Normokalemia

Hybrid gene test

CT scanning

Mass ≥ 2.5 cm Mass < 2.5 cm No mass

Adrenal venous sampling

Unilateral Bilateral

Unilateral adrenalectomy Spironolactone or amiloride

Treatment

Screening

Confirming diagnosis

Determining subtype

FH-I
Screening for PAL

- Aldosterone/renin ratio (ARR)

- Aldosterone - pg/mL, plasma renin activity - ng/mL/hr; Cut-off value for ARR = 300

- Accurate measurement is required for a correct diagnosis

1Stowasser M, Gordon RD. The Endocrinologist 2004;14:267-276
Aldosterone Measurement

- Analytical range – 25 to 2000 pg/mL
 (70 to 5540 pmol/L)

- **Gas chromatography** – complex sample preparation with chemical derivatisation

- **Immunoassay** – currently the most routinely used
Immunoassays

• RIA – typically rabbit polyclonal antisera

• Questionable specificity

• Lack of adequate standardisation

• Poor inter-laboratory reproducibility
Immunoassays

- Limited comparability of different immunoassays – difficulty in defining cut-off values for PAL → each laboratory establish their own reference interval

- Automated chemiluminescence-immunoassay withdrawn from market – questionable analytical performance
Comparison of Four Immunoassays

<table>
<thead>
<tr>
<th>Assay</th>
<th>Adalts Aldosterone Mala</th>
<th>DSL Active Aldosterone</th>
<th>Nichols Advantage Aldosterone</th>
<th>In-house assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracer</td>
<td>125I</td>
<td>125I</td>
<td>(chemiluminescence.)</td>
<td>3H</td>
</tr>
<tr>
<td>Antibody</td>
<td>Polyclonal</td>
<td>Polyclonal</td>
<td>Monoclonal</td>
<td>Polyclonal</td>
</tr>
<tr>
<td>Sample serum or</td>
<td>50</td>
<td>100</td>
<td>450</td>
<td>250–500</td>
</tr>
<tr>
<td>plasma, μL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working range,</td>
<td>6–2500</td>
<td>2–1600</td>
<td>15–1200</td>
<td>10–2000</td>
</tr>
<tr>
<td>ng/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intraassay</td>
<td>3.5–5.4</td>
<td>3.6–8.3</td>
<td>2.9–14.0</td>
<td>3.5–8.5</td>
</tr>
<tr>
<td>variability, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interassay</td>
<td>3.6–6.4</td>
<td>7.3–10.4</td>
<td>4.9–18.6</td>
<td>9.6–12.2</td>
</tr>
<tr>
<td>variability, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross-reactivity, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldosterone 100</td>
<td>Aldosterone 100</td>
<td>Aldosterone 100</td>
<td>Aldosterone 100</td>
<td>Neiblable since cross-reacting steroids are removed by chromatographic purification</td>
</tr>
<tr>
<td>Progesterone 0.0004</td>
<td>Progesterone <0.0001</td>
<td>Corticosterone 0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testosterone 0.0005</td>
<td>Testosterone <0.0001</td>
<td>18-OH–corticosterone 0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corticosterone 0.002</td>
<td>Corticosterone <0.0001</td>
<td>Cortisol <0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortisol 0.00007</td>
<td>Corticosterone <0.0001</td>
<td>Cortisol <0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estrone 0.00002</td>
<td>Estrone <0.0001</td>
<td>Desoxycorticosterone 0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estradiol 0.00004</td>
<td>Estradiol 0.00004</td>
<td>Dexamethasone 0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estriol 0.00003</td>
<td>Estriol undetectable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Dihydroaldosterone 14.1</td>
<td>18-hydroxy corticosterone 0.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3α,5β-Tetrahydroaldosterone 1.1</td>
<td>Dexamethasone <0.00001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference interval</td>
<td>Serum: not given</td>
<td>Serum: 30–340</td>
<td>Serum: 38–313</td>
<td>Serum and plasma: 60–300 standing</td>
</tr>
<tr>
<td>(standing) ng/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasma: 70–350</td>
<td></td>
<td>Plasma: 30–220</td>
<td></td>
<td>20–100 recumbent</td>
</tr>
</tbody>
</table>

* Conversion: ng/L × 2.774 = pmol/L. Cross-reacting steroids are removed by chromatographic purification.
Summary

• There is an ever growing population that require screening for PAL
• Accurate measurement of aldosterone is required for the diagnosis of PAL
• Immunoassays have a number of issues that make them less than desirable

• Can HPLC-MS offer a viable alternative?
Methods
Symbiosis LC – Mass Spectrometer System

- Sample Stacker
- Autosampler
- High Pressure Dispensers
- Binary Pumps
- ACE
- Column Oven/ Switching valve
- Mass Spectrometer
Mass Spectrometry (1)
Mass Spectrometry

- Positive ionisation: \([M+H]^+\) and \([M+Na]^+\)
- Protonated species fragmented through a series of water losses – non-specific
- Negative ionisation: \([M-H]^-\)
Mass Spectrum of Aldosterone

\([\text{M-H}]^-\) 358.9
Mass Spectrometry

- Positive ionisation: \([M+H]^+\) and \([M+Na]^+\)
- Protonated species fragmented through a series of water losses – non-specific
- Negative ionisation: \([M-H]^-\)
- Fragmentation resulted in 2 major ions:
 \[m/z\ 331.3\ \text{and}\ 189.3\]
CID Mass Spectrum of Aldosterone

![CID Mass Spectrum of Aldosterone](image)

- Mass to charge ratio (m/z): 330.9 [M-H]-
- Intensity (cps): 188.8

CID Mass Spectrum of Aldosterone

- Mass to charge ratio (m/z): 330.9 [M-H]-
- Intensity (cps): 188.8
On-Line SPE With a Hysphere C18 HD Cartridge

- Condition: acetonitrile (1 mL) and water (1 mL)
- Load: water (1 mL)
- Wash: 10% acetonitrile in 0.1% ammonium hydroxide
 10% acetonitrile in 0.1% formic acid
 10% acetonitrile in water
- Elution time: 45 sec
Online Extraction of Aldosterone
Water-Based Standard 18.5 pg/mL

150806B117 Smooth(Mn,2x2)
18.5 pg/ml in water
aldosterone

MRM of 2 channels,ES-359.2 > 331.4
6.023e+002
Water-Based Standard Curve

Compound name: aldosterone
Correlation coefficient: \(r = 0.998480, r^2 = 0.996962 \)
Calibration curve: \(0.589704 \times x + -4.30067 \)
Response type: External Std, Area
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Analytical range
18.5 to 3700 pg/mL

\(R^2 = 0.996 \)
Summary: Water-Based Standards

- Sample volume: 250 μL
- Limit of quantification: 18.5 pg/mL
- Linear range: 18.5 to 3700 pg/mL ($r^2 = 0.996$)
Response vs Injection Volume
Neat Plasma – 50 x 2.1 mm

Approximately -70%
Sample Pre-treatment

- Plasma (200 µL) + 1:5 vol:vol 0.3M zinc sulphate: methanol containing d-7 aldosterone (200 µL)
- Mix and centrifuge
- Transfer supernatant (could perform this in plate format and remove transfer step)
Response vs Injection Volume
Protein Precipitation – 50 x 2.1 mm

Aldo Peak Area vs Volume Spiked Plasma (uL)

≈ -40%
Response vs Injection Volume
Protein Precipitation – 50 x 3.0 mm

Volume Spiked Plasma (uL)

Aldo Peak Area

≈ -15%
HPLC Conditions

- Analytical column: Sunfire C18 (50 x 3.0 mm, 3 μm, Waters)
- Mobile phase A: water
- Mobile phase B: acetonitrile
- Column temperature: ambient
- Isocratic elution (35% B at 0.3 mL/min) with an organic wash (100% B at 1.0 mL/min)
HPLC Conditions – Gradient

<table>
<thead>
<tr>
<th>Time (min:sec)</th>
<th>%B</th>
<th>Flow rate (ml/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>35</td>
<td>0.3</td>
</tr>
<tr>
<td>2:28</td>
<td>35</td>
<td>0.3</td>
</tr>
<tr>
<td>2:30</td>
<td>100***</td>
<td>1.0</td>
</tr>
<tr>
<td>4:30</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>4:35</td>
<td>35</td>
<td>0.3</td>
</tr>
<tr>
<td>6:59</td>
<td>35</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Results
Selectivity

- Screened 5 patients with Addison’s disease and observed no interferences at the retention times of aldosterone or the internal standard in their respective mass transitions
Addison’s Patient Sample

358.9 → 330.9
Aldosterone LLOQ (25 pg/mL)

S/N = 17:1

358.9 → 330.9
Internal Standard (LLOQ)

365.9 → 337.9
Patient Sample (52.7 pg/mL)

358.9→330.9
Linearity

- 25 to 2000 pg/mL
- $r^2 > 0.996$ (n = 16)
Inter-Day Accuracy and Imprecision

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nominal aldosterone concentration (pg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Mean Concentration (pg/mL)</td>
<td>23.6</td>
</tr>
<tr>
<td>S.D. (pg/mL)</td>
<td>2.22</td>
</tr>
<tr>
<td>Accuracy (%)</td>
<td>94.5</td>
</tr>
<tr>
<td>Imprecision (%)</td>
<td>9.4</td>
</tr>
</tbody>
</table>
Frequency Distribution of Aldosterone Results Obtained from Upright (Seated) Normotensive Subjects (n = 97)
External Quality Controls DGKL (Germany)

\[y = 0.986x + 4.2 \]

\[R^2 = 0.9997 \]

\[n = 5 \]
Influence of Collection Tube on Results

- **Plasma:**
 - EDTA
 - Li Heparin

- **Serum:**
 - Plain clot tube
 - Serum separator tube (SST)
Comparison of Aldosterone Results Obtained from Plain Clot Versus EDTA Collection Tubes

\[y = 1.0393x + 0.7078 \]
\[r^2 = 0.993 \]
\[n = 66 \]
Confirmation of PAL by Fludrocortisone Suppression Test
Fludrocortisone Suppression Test

- Testing involved the collection of blood samples for aldosterone measurement at 0800 h (after overnight recumbency) and 1000 h (after 2 h of upright posture) basally and after 3 and 4 days of fludrocortisone and oral salt loading. A day 4 upright plasma aldosterone concentration >165 pmol/L was considered diagnostic of PAL.
Aims

• To compare aldosterone results obtained by a commercial immunoassay with a our newly developed LC-MS/MS method, using samples obtained from patients undergoing FST

• (1) address whether the two methods would give similar diagnoses (i.e. "PAL confirmed" versus "PAL excluded") among this patient cohort

• (2) compare the absolute concentrations obtained by each method
Aldosterone Measurement

• A commercial immunoassay (DPC Coat-a-Count™ aldosterone kit, Diagnostic Products Corporation, Los Angeles, CA, USA)

• Our in-house LC-MS/MS method
Patients

- A total of 19 patients undergoing FST were investigated in this study.
- 16 patients had been diagnosed with PAL based on aldosterone immunoassay results.
- 3 patients had undergone post-operative FST following unilateral adrenalectomy for aldosterone producing adenoma.
Results

- The aldosterone results (>165 pmol/L) obtained by LC-MS/MS confirmed the diagnosis of PAL in all 16 patients
Results

• In the 3 patients undergoing post-operative FST following unilateral adrenalectomy for aldosterone-producing adenoma, both immunoassay and LC-MS/MS day 4 upright aldosterone concentrations were <70 pmol/L, confirming biochemical cure of PAL
Deming regression analysis gave the equation LC-MS/MS = 0.80*RIAl + 43.
Bland Altman Plot Comparing Aldosterone Results

mean bias = -10.6%
95% confidence intervals = -85.8% to 64.3%
Comparison of Aldosterone Results Stratified According to Concentration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Concentration range (pmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 165</td>
</tr>
<tr>
<td>Number of samples</td>
<td>11</td>
</tr>
<tr>
<td>Mean bias (pmol/L)</td>
<td>9.8</td>
</tr>
<tr>
<td>95% Limits of agreement (pmol/L)</td>
<td>-43 to 63</td>
</tr>
</tbody>
</table>

Mean bias is based on immunoassay minus LC-MS/MS
DPC Immunoassay Binding Curve

Percent bound vs. Aldosterone concentration (pg/mL)
Discussion

• The results obtained in this study confirm the clinical validity of our currently used immunoassay for the diagnosis of PAL.
Discussion

• The underestimation of aldosterone results by the immunoassay at higher concentrations may be an important consideration for some clinical applications (i.e. adrenal venous sampling)

• Ongoing studies are addressing this issue
Case Report

- A 44 year old male with congenital adrenal hyperplasia had an aldosterone of 694 pg/mL as measured by immunoassay (DPC)
Case Report

- A 44 year old male with congenital adrenal hyperplasia had an aldosterone of 694 pg/mL as measured by immunoassay (DPC)
- Result of 92 pg/mL
- Greater than 6-fold overestimation of result
Chromatograms From CAH Patient

090807B204 Smooth(Mn,2x2)
S_N PATIENT High

MRM of 2 channels, ES-
365.9 > 337.9
3.051e+004

Aldosterone; 2.14; 243.64; 1976
2.41

090807B204 Smooth(Mn,2x2)
S_N PATIENT High

MRM of 2 channels, ES-
358.9 > 330.9
3.246e+003

d7-Aldosterone; 2.11; 4518.09; 30117
1.52
1.74
1.90

Discussion

- The semi-automated method described is a world-first for the analysis of aldosterone.

- Excellent accuracy and precision across the clinically important concentration range.

- Selective/specific method for aldosterone.

- Sample throughput of 7 min/sample – suited to screening large numbers of patients.
Discussion

- The results obtained using this method will allow the establishment of reference ranges for the aldosterone/renin ratio

- Translate across laboratories – harmonisation

- Improved diagnosis

- Will provide an invaluable tool for future research into endocrine disorders
Discussion

• This analytical approach has the potential to be used for the measurement of other steroids (e.g. testosterone, estradiol, etc)

• Potential for simultaneous measurement of a panel of steroids (e.g. aldosterone and cortisol)
Conclusion

• It can be envisaged that this approach will become the “gold standard” for screening of primary aldosteronism and other aldosterone related diseases