COENZYME Q10 IN HEALTH AND DISEASE

PM George, RJ Mackay, Molyneux SL, Young JM, Lever M and Florkowski CM

Canterbury Health Laboratories
Presentation Outline

• Background on CoQ
• Measuring CoQ
• Normal values and variation
• CoQ in disease states
 – Statin therapy
 – Statin induced myalgia
 – Heart Failure
 – Endothelial function
 – Diabetes
 – Hypertension
CoQ10 and vitamin K

Coenzyme Q is a hydrophobic quinone (ubiquinone) involved in electron transport. In the body it occurs mainly as the hydroquinone (ubiquinol).

It is chemically related to the K vitamins, and similar analytical principles can be applied to both groups of compounds.
CoQ

- Synthesised endogenously
- Present in the body in reduced and oxidised form, 96% is in reduced form in healthy subjects
- Reduced to oxidised ratio may indicate oxidative stress
- Reduced form can act as an antioxidant
- Circulates in blood bound to lipoproteins
CoQ - role in health

The diagram illustrates the role of CoQ in the mitochondrial electron transport chain. CoQ acts as a shuttle between the cytochrome C1 (Fe-S) and cytochrome b (Fe-S). It also interacts with succinate and FAD, facilitating the transfer of electrons to NADH and generating ATP through the formation of ADP. The process involves the reduction of O₂ to H₂O, with the intermediate 1/2O₂ forming water. The diagram highlights the importance of CoQ in energy production and cellular health.
CoQ - role in health

- Antioxidant
 - reduced form only
 - regenerates \(\alpha \)-tocopherol

- Mitochondrial function
 – generation of ATP

- Synthesis by the mevalonate pathway

- Also obtained from the diet - especially meats
Why measure Coenzyme Q?

- Coenzyme Q (CoQ) biosynthesis is inhibited by statin drugs and this may contribute to muscular complications of cholesterol lowering therapy.
- Individual variation within the reference range
- Variable bioavailability of supplements
- Low levels may be associated with a worse prognosis in vascular disease.
- Clinical research into the significance of CoQ in vascular disease.
Measuring plasma CoQ

- HPLC with electrochemical detection
- CV < 5%
- Lithium heparin plasma
- Sample protected from light
- Storage at -80°C
CoQ is more soluble in lipids than in lower alcohols such as ethanol.

Ethanol and methanol are not miscible with triacylglycerols.

Two-phase extraction, evaporation, and redissolution in ethanol gives low yields, much of the CoQ remaining with the undissolved plasma lipid.

Good recoveries can be obtained by extraction into 1-propanol with about 7 vol propanol to 1 vol sample.
CoQ is not strongly absorbed by normal phase silica, so practical mobile phases (for normal phase chromatography) contain very little polar modifier. As a result it is difficult to extract CoQ into an injection solvent that does not have a lot more eluting power than the mobile phase. Most methods use reverse phase columns with highly non-polar mobile phases.
Reduced coenzyme Q$_{10}$ (ubiquinol) is more hydrophilic than the quinone and elutes earlier from a reversed phase column.

Clean separations are easily achieved.
Detection of plasma CoQ

UV detection (275 nm)

Electrochemical detection

Fluorescence detection
Analysis of plasma CoQ

- Coenzyme Q₉ was found in all human plasma samples studied.
- Illustration of separation on a C30 column.
- Separation (and co-chromatography with added standard) was confirmed on three different columns.
CoQ₉ has been widely used as an internal standard. But it is present in normal human plasma.

The ethyl analogue of coenzyme Q₁₀ has been used: this needs to be synthesized.

However, with propanol extraction the efficiency is close to 100% so internal standards are not really necessary.
<table>
<thead>
<tr>
<th></th>
<th>Between-Run %CV</th>
<th>Within-Run %CV</th>
<th>Recovery (%)</th>
<th>Concentration Range (µmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultraviolet detection</td>
<td>3.2</td>
<td>2.4</td>
<td>93 - 103</td>
<td>0.24 - 0.98</td>
</tr>
<tr>
<td>detection assay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrochemical</td>
<td>3.3</td>
<td>3.2</td>
<td>98 - 102</td>
<td>0.15 - 2.76</td>
</tr>
<tr>
<td>detection assay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No effect of anticoagulants on ultraviolet assay, CoQ in EDTA plasma samples on average 4.4 ± 2.9% lower than in lithium heparin and serum samples (c.f. total cholesterol)
Ninety five percent reference intervals

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>95% interfractile reference interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total CoQ<sub>10</sub></td>
<td>205</td>
<td>0.46 – 1.78 µmol/L</td>
</tr>
<tr>
<td>Total CoQ<sub>10</sub> – Males</td>
<td>90</td>
<td>0.45 – 2.05 µmol/L<sup>a</sup></td>
</tr>
<tr>
<td>Total CoQ<sub>10</sub> - Females</td>
<td>115</td>
<td>0.46 – 1.71 µmol/L<sup>a</sup></td>
</tr>
<tr>
<td>Total CoQ<sub>10</sub> – Age 18 – 44 years</td>
<td>105</td>
<td>0.43 – 1.61 µmol/L</td>
</tr>
<tr>
<td>Total CoQ<sub>10</sub> – Age 45 – 83 years</td>
<td>100</td>
<td>0.57 – 1.95 µmol/L</td>
</tr>
</tbody>
</table>

^a stratification not required according to Harris and Boyde criteria

No significant difference between fasted (N = 115) and non-fasted (N = 90)

Measured CoQ, total cholesterol, and direct LDL cholesterol.
Significant correlation between CoQ and total (r = +0.651) and LDL-Cholesterol (r = +0.600). Both p < 0.001
Biological variation

- Healthy young male volunteers (N = 10)
- 7 fasting baseline measurements at least a week apart, over 2 month period
- Measured CoQ, LDL-Cholesterol, total cholesterol, and HDL-Cholesterol, all had healthy lipid levels
Inter- and Intra-individual variation

<table>
<thead>
<tr>
<th></th>
<th>Intra-individual %CV</th>
<th>Inter-individual %CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total CoQ</td>
<td>12</td>
<td>29</td>
</tr>
<tr>
<td>CoQ to LDL-C ratio</td>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td>CoQ to TC ratio</td>
<td>14</td>
<td>18</td>
</tr>
</tbody>
</table>

- CoQ is tightly distributed around a homeostatic set point
Inter- and Intra-individual variation

- Index of individuality (II)
- Low index (<0.6) - values for an individual span a small part of the reference interval
- High index (>1.4) - values for an individual cover most of the reference interval
- For total CoQ10, II = 0.42

- Reference change value (RCV)
 \[\text{RCV} = 2^{1/2} \times Z \times (CV_a^2 + CV_i^2)^{1/2} \]
- For total plasma CoQ_{10}, RCV = 35\% (for a 95\% significant change)
- Example: Total CoQ_{10} concentration = 1 \mu mol/L
 \[\Rightarrow \text{95\% significant change is below or over 0.65, or 1.35} \mu mol/L \]
Bioavailability of CoQ supplements

- Seven different CoQ supplement brands
 - Blackmores - CoQ dissolved in oil + surfactant
 - Solgar - dry powder
 - Q-Gel - CoQ dissolved in oil + surfactant
 - Thompsons - CoQ dissolved in oil
 - Good Health - dry powder, chewable tablets
 - Radiance - CoQ dissolved in oil + surfactants
 - Kordels - CoQ in dissolved in oils
Bioavailability of CoQ supplements

Supplement adherence

<table>
<thead>
<tr>
<th>Brand</th>
<th>Claimed</th>
<th>Measured (mean ±SD)</th>
<th>Yield Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-Gel</td>
<td>30</td>
<td>41 ± 1.3</td>
<td>137</td>
</tr>
<tr>
<td>Radiance</td>
<td>50</td>
<td>63 ± 2.1</td>
<td>125</td>
</tr>
<tr>
<td>Blackmores</td>
<td>50</td>
<td>60 ± 4.1</td>
<td>121</td>
</tr>
<tr>
<td>Solgar</td>
<td>30</td>
<td>39 ± 4.4</td>
<td>130</td>
</tr>
<tr>
<td>Kordel’s</td>
<td>75</td>
<td>95 ± 5.5</td>
<td>127</td>
</tr>
<tr>
<td>Thompson’s</td>
<td>30</td>
<td>36 ± 1.9</td>
<td>121</td>
</tr>
<tr>
<td>Good Health</td>
<td>30</td>
<td>30 ± 2.0</td>
<td>100</td>
</tr>
</tbody>
</table>

(n = 6 tablets or capsules)
Bioavailability of CoQ supplements

- Healthy young males (N = 10)
- Given single nominal 150 mg dose of each supplement brand, at least a week apart
- Blood samples taken at baseline, and six hours after ingestion of supplement
- Standardised breakfast and lunch provided (total CoQ content of diet approximately 315 µg)
Bioavailability of CoQ supplements

Median values and 25th and 75th quartiles for change in CoQ10 for each supplement

<table>
<thead>
<tr>
<th>CoQ10 Supplement Brand</th>
<th>Change in CoQ10 (μmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kordels</td>
<td>0.2</td>
</tr>
<tr>
<td>Blackmore’s</td>
<td>0.4</td>
</tr>
<tr>
<td>Thompson’s</td>
<td>0.6</td>
</tr>
<tr>
<td>Radiance</td>
<td>1.0</td>
</tr>
<tr>
<td>Good Health</td>
<td>1.2</td>
</tr>
<tr>
<td>Solgar</td>
<td>1.4</td>
</tr>
<tr>
<td>Q-Gel</td>
<td>1.6</td>
</tr>
</tbody>
</table>
Bioavailability of CoQ$_{10}$ supplements

Percentage adsorption for individual participants, all supplements

Percentage CoQ increase

Participant
Primary CoQ deficiency

- A rare, apparently autosomal recessive disorder with a clinical spectrum that encompasses three major phenotypes:
 - A myopathic form, characterised by exercise intolerance, mitochondrial myopathy, myoglobinuria, epilepsy, and ataxia
 - A generalised infantile variant with severe encephalopathy and renal disease
 - An ataxic form, dominated by ataxia, seizures, and cerebellar atrophy
CoQ and disease

Deficiency is relevant in

- Statin-induced myalgia
- Congestive Heart Failure
- Hypertension
- Parkinsons disease
- Alzheimers disease
- Chronic fatigue
- Infertility
- Cancer
- Diabetes
Statins Inhibit HMG-CoA Reductase

The mevalonate pathway links cholesterol and CoQ synthesis

Acetyl-CoA → HMG-CoA → Mevalonate → Farnesyl-pyrophosphate

STATINS (HMG-CoA reductase inhibitors)

- Coenzyme Q₁₀
- Cholesterol
Statin-induced CoQ deficiency

- 24 CHF patients
- Randomised placebo-controlled study
- 40 mg Atorvastatin for six weeks
- 33% CoQ reduction (p < 0.001)
Statin-Induced Myopathy

• Most frequently reported side effect of statin therapy

• Local data → 13% myalgia on statins

• Often necessitates reduction in statin dose or cessation of treatment
Effect of CoQ Supplementation on Simvastatin-Induced Myalgia

Patients with Prior Statin-Myalgia (n=44)

Two-Week Washout of Lipid Lowering Therapies

Randomisation

Coenzyme Q10 (200 mg/day) (n=22)

Placebo (n=22)

In combination with open label simvastatin 10mg/day with upward dose titration every 4 weeks if tolerated to a maximum of 40mg/day

Data collection at baseline and 4 weekly for up to 12 weeks

Young et al. Am J Cardiol (accepted 2007)
Changes in Plasma CoQ Levels

Plasma CoQ\textsubscript{10} Levels (\textmu mol/L)

* p<0.001 for comparison between regimes

* p<0.001 for within group changes from baseline
Statin Dose Tolerated at 12 Weeks

<table>
<thead>
<tr>
<th>Dose tolerated</th>
<th>Simvastatin Alone (n=22)</th>
<th>CoQ<sub>10</sub> & Simvastatin (n=22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40mg/day</td>
<td>13 (59%)</td>
<td>16 (73%)</td>
</tr>
<tr>
<td>20mg/day</td>
<td>3 (14%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>10mg/day</td>
<td>2 (9%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>0</td>
<td>4 (18%)</td>
<td>6 (27%)</td>
</tr>
</tbody>
</table>

Values are counts (percentages). χ^2 test – no significant differences
Changes in Pain Severity Scores

Coenzyme Q$_{10}$ (n=18)
- 40% reduction in pain score (p<0.001)

Vitamin E (n=14)
- No change in pain score (NS)

Caso et al. Am J Cardiol 2007; 99: 1409-12
CHF Background: CoQ$_{10}$ and CHF

- Reduced levels of CoQ$_{10}$ have been reported in plasma and myocardium of patients with chronic heart failure [1]

- Q-SYMBIO (Coenzyme Q$_{10}$ as adjunctive treatment of chronic heart failure. A randomised double-blind multicenter trial with focus on Symptoms, Biomarker status (BNP) and long-term Outcome) [2]

 - An International study, expected completion late 2010
 - 550 patients in NYHA classes III-IV in randomised parallel groups to receive 300 mg CoQ10 daily vs placebo on the top of stable, current treatment
 - 6-minute walk tests and NTproBNP status assessment
 - Long-term follow-up to evaluate the effects on morbidity (unplanned cardiovascular hospitalisations) and mortality as a composite endpoint in patients with severe heart failure receiving optimal medical therapy

5.2 mmol/L was the best predictor of mortality by ROC-curve analysis.

Log-rank p=0.0011 for the difference between groups.

- n=303
 - n=126 below 5.2 mmol/L
 - n=177 above 5.2 mmol/L

- 36-month survival 59% in below 5.2 mmol/L and 75% in above 5.2 mmol/L group.

CHF Background: CoQ$_{10}$ therapy

- ATP generation is critical for cardiac function
- In Japan, adjunctive therapy with CoQ$_{10}$ has been an accepted medication for CHF since the 1970’s
- Also in parts of Europe and Russia CoQ$_{10}$ is considered a part of standard therapy for congestive heart failure patients
- Plasma CoQ$_{10}$ correlates with plasma lipids

n=205
(Healthy New Zealand Reference Range)
Study Objective and Methods

• To investigate the association of plasma CoQ$_{10}$ concentrations and mortality in a chronic heart failure population

• Randomised, controlled and blinded study

• Patients recruited 2-4 weeks post-discharge from index hospital admission with CHF

• N=236

• Median (range) follow-up was 2.69 (0.12 - 5.75) years
ROC curve – Total Cholesterol

- AUC (± SE) = 0.486 ± 0.041
- P* = 0.740
- Optimal cut-off cannot be determined due to non-significant ROC-curve

(* p-value is for difference from a random effect)
ROC curve – CoQ\textsubscript{10}

- \(P^* = 0.041 \)
- \(\text{AUC (± SE)} = 0.582 ± 0.040 \)
- Optimal cut-off = 0.73 \(\mu \text{mol/L} \)

(* p-value is for difference from a random effect)
- Survival with CoQ₁₀ above and below the ROC-curve determined best predictive value of mortality.
- Log-rank p<0.001 for the difference between groups
CoQ10 and endothelial function: Study Design

- Double-blind, placebo controlled cross over 6-wk study.
- 24 patients with CHF [NYHA II or III, LVEF < 40%].
Statin therapy improved endothelial function in CHF

AUC = Area under the curve, ACh = Acetylcholine (7.5 - 30 µg/min), * p<0.05, ** p<0.01
Plasma Coenzyme Q$_{10}$ Reduction vs Improvement in Endothelial Function Post Statin Therapy

Absolute change in AUC

Absolute reduction in coenzyme Q10 levels [µmol/L]

$r = 0.55, p = 0.011$

* during ACh infusion at 30 ug/min
CoQ and Diabetes

- Plasma CoQ reduced in diabetes.
- CoQ shown to improve HBA1c, glucose levels, reduce insulin levels.
- CoQ also reduced blood pressure.
- CoQ improved vascular function (FMD), but not microcirculation.
- Combination CoQ and Fibrate treatment improved microcirculatory function.
CoQ and Hypertension

- Recent meta-analyses – 12 trials
- Decrease in systolic blood pressure: 11-17mmHg
- Decrease in diastolic blood pressure: 8-10mmHg
- Antioxidant mechanism
- CoQ maybe useful adjunct in resistant hypertension and patients with side effects.
Conclusions

• CoQ is clinically relevant to a number of diseases
• Supplementation may be indicated in heart failure, statin induced myalgia, diabetes and hypertension
• Monitoring is appropriate during supplementation
LIPID AND DIABETES RESEARCH GROUP

Collaborators:anko

CANTERBURY HEALTH LABORATORIES